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 11 

Abstract 12 

The Comprehensive Automobile Research System (CARS) is an open-source python-based 13 

automobile emissions inventory model designed to efficiently estimate high quality emissions 14 

from motor-vehicle emission sources. It can estimate the criteria air pollutants, greenhouse gases, 15 

and air toxics in various temporal resolutions at the national, state, county, and any spatial 16 

resolution based on the spatiotemporal resolutions of input datasets. The CARS is designed to 17 

utilize the local vehicle activity database, such as vehicle travel distance, road link-level network 18 

Geographic Information System (GIS) information, and vehicle-specific average speed by road 19 

type, to generate a temporally and spatially enhanced automobile emissions inventory for 20 

policymakers, stakeholders, and the air quality modeling community. The CARS model adopted 21 

the European Environment Agency’s (EEA) onroad automobile emissions calculation 22 

methodologies to estimate the hot exhaust, cold start, and evaporative emissions from onroad 23 

automobile sources. It can optionally utilize road link-specific average speed distribution (ASD) 24 

inputs to reflect more realistic vehicle speed variations by road type than a road-specific single 25 

averaged speed approach. Also, utilizing high-resolution road GIS data allows the CARS to 26 

estimate the road link-level emissions to improve the inventory's spatial resolution. When we 27 

compared the official 2015 national mobile emissions from Korea’s Clean Air Policy Support 28 

System (CAPSS) against the ones estimated by the CARS, there is a moderate increase of VOC 29 

(33%), CO (52%), and fine particulate matter (PM2.5) (15%) emissions while NOx and SOx are 30 

reduced by 24% and 17% in the CARS estimates. The main differences are driven by the usage of 31 

different vehicle activities and the incorporation of road-specific ASD, which plays a critical role 32 
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in hot exhaust emission estimates but wasn’t implemented in Korea’s CAPSS mobile emissions 33 

inventory. While 52% of vehicles use gasoline fuel and 35% use diesel, gasoline vehicles only 34 

contribute 7.7% of total NOx emissions while diesel vehicles contribute 85.3%. But for VOC 35 

emissions, gasoline vehicles contribute 52.1% while diesel vehicles are limited to 23%. While 36 

diesel buses are only 0.3% of vehicles, each vehicle has the largest contribution to NOx emissions 37 

(8.51% of NOx total) due to its longest daily VKT. For VOC, CNG buses are the largest contributor 38 

with 19.5% of total VOC emissions. It indicates that the CNG bus is better for the rural area while 39 

the diesel bus is better applicable for the urban area for a better ozone control strategy because the 40 

rural area is usually NOx limited for ozone formation and urban area is VOC limited region. For 41 

primary PM2.5, more than 98.5% is from diesel vehicles. The CARS model's in-depth analysis 42 

feature can assist government policymakers and stakeholders develop the best emission abatement 43 

strategies.  44 

Keywords: inventory: automobile, vehicle emissions, hot exhaust, cold start, evaporative, python 45 

1 Introduction 46 

Globally, ambient pollution causes more than 4.2 million premature deaths every year. Indoor 47 

air pollution causes 3.8 million deaths and over 90% of people live in places where air pollutants 48 

exceed the WHO standards (WHO, 2019; Hogrefe et al., 2001a; Hogrefe et al., 2001b; Dennis et 49 

al., 2010; Rao et al., 2011; Appel et al., 2013; Luo et al., 2019). To effectively mitigate air 50 

pollutants, both developed and developing countries’ governments have been implementing 51 

stringent air pollution abatement control policies to reduce harmful regional air pollutants. 52 

Chemical transport models (CTM) are a powerful tool to study and develop an efficient control 53 

strategy for local and regional air quality (Hogrefe et al., 2001a; Hogrefe et al., 2001b; Dennis et 54 

al., 2010; Rao et al., 2011; Appel et al., 2013; Luo et al., 2019). The CTM simulation results 55 

strongly rely on precise input data, such as emission inventory, meteorology, land surface 56 

parameters, and chemical mechanisms in the atmosphere. The most dominant factor for accurate 57 

CTM performance is temporally and spatially high-quality emissions, especially in the worst air 58 

quality regions with significant anthropogenic emission sources.  59 

The major anthropogenic emission sources in urban areas are from transportation emission 60 

sectors. The tailpipe emissions from the vehicle’s combustion process contain many air pollutants, 61 

including nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), 62 

ammonia (NH3), sulfur dioxide (SO2), and primary particulate matter (PM) which will participate 63 

in the formation of detrimental secondary pollutants like ozone and PM2.5 in the atmosphere. In 64 

the Seoul Metropolitan Area (SMA) in South Korea, transportation automobile sources contribute 65 

the most to the total NOX and primary PM2.5 emissions across all emission sources. While more 66 

than 60% of total ambient PM2.5 are primary PM2.5 directly emitted from the sources, (Choi et al., 67 
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2014; Kim et al., 2017a; Kim et al., 2017b; Kim et al., 2017c), the rest of the ambient PM2.5 are 68 

secondary pollutant from heterogenous chemical reactions in the atmosphere during the 69 

transportation. Thus, it is critical to understand and represent better on the emission patterns from 70 

the transportation automobile sources in the CTM model. The use of process-based automobile 71 

emission models is highly recommended to meet the needs in CTM model because it can estimate 72 

the high quality spatiotemporal automobile emissions based on parameterizations of the emission 73 

processes, such as physical, chemical, and vehicle operation processes from on/off-network roads 74 

(Moussiopoulos et al., 2009; Russell and Dennis, 2000). 75 

There are two methodologies known in emission inventory development: top-down and 76 

bottom-up. The choice of methods is determined by the input data availability. The top-down 77 

approach primarily relies on the aggregated and generalized country or regional information, 78 

especially in developing countries where only limited datasets and information are available. It has 79 

its limitations on representing the vehicle emission process realistically due to the lack of detailed 80 

activity and ancillary supporting data. However, the bottom-up approach requires higher-quality 81 

spatiotemporal activity datasets like road network information, vehicle composition (vehicle type, 82 

engine size, vehicle age, and fuel-technology), pollutant-specific emissions factors, road segment 83 

length, traffic activity data, and fuel consumption (EEA, 2019; Ibarra-Espinosa et al., 2018b; 84 

IEMA, 2017). It can generate more accurate and detailed automobile emissions across various 85 

operating processes, such as hot exhaust, evaporative, idling, and hot soak (Nagpure et al., 2016; 86 

Ibarra-Espinosa et al., 2018a). 87 

There are several bottom-up mobile emissions models available, like MOVES (MOtor 88 

Vehicle Emissions Simulator) from the U.S. Environmental Protection Agency (USEPA), the 89 

European Environment Agency’s (EEA) model COPERT (COmputer Programmed to calculate 90 

Emissions from Road Transport), the HERMES (High-Elective Resolution Modelling Emission 91 

System) from Barcelona Supercomputing Center (Guevara et al., 2019), the VEIN (Vehicular 92 

Emissions INventory) model developed by Ibarra-Espinosa et al. (2017), and the VAPI (Vehicular 93 

Air Pollution Inventory) model developed by Nagpure and Gurjar (2012) for India (Nagpure et al., 94 

2016). While these models are all bottom-up emission inventory models, a single model cannot 95 

meet all modelers, policymakers, and stakeholders' needs because each model holds its own pros 96 

and cons. They are developed differently to meet their own needs based on the types of traffic 97 

activity and emission factors, emission calculation methodologies, and other optional/available 98 

traffic-related inputs such as average speed distribution and geographical resolution. The bottom-99 

up emission calculations can be further complicated when other factors like emissions factors with 100 

varying vehicle operation speeds and local meteorology are accounted for. 101 

The MOVES model has the strength to generate high-quality emissions for up to 16 102 

different emission processes (i.e., Running Exhaust, Start Exhaust, Evaporative, Refueling, 103 

Extended Idling, Brake, Tire, etc.). It can simulate not only county-level but also road segment 104 

level depending on data availability. It can also reflect local meteorological conditions, such as 105 
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ambient temperature and relative humidity, which can significantly impact both pollutants and 106 

emissions processes (Choi et al., 2017; Perugu et al., 2018). Disadvantages of this model are the 107 

lack of transparency for emission factors and algorithms and that it is computationally expensive 108 

to generate these high-quality emissions inventories (Li et al., 2016; Xu et al., 2016; Liu et al., 109 

2019; Perugu, 2019). The COPERT model that is widely used in European countries has its 110 

advantages, such as the capability to model emissions in high resolution. Additionally, it is fully 111 

integrated with the EEA’s onroad vehicle emissions factors guidelines and can generate a complete 112 

quality assurance (QA) and visualization summary (Ntziachristos et al., 2009). The cons are that 113 

it is a proprietary commercial licensed software, limited to EEA guidance, and challenging to 114 

modify and update with any key input datasets like the latest emission factors from non-European 115 

countries (Lejri et al., 2018; Rey DR, 2018; Li et al., 2019; Lv et al., 2019; Smit et al., 2019). 116 

The HERMES and VEIN are both recently released bottom-up inventory models. They 117 

have their pros in that they are both open-source models based on open-source computing 118 

languages (Python and R), which provide transparency of emission calculations with a 119 

considerable amount of data behind it (Ibarra-Espinosa et al., 2018b; Guevara et al., 2019). Both 120 

models are driven by comma-separated value (CSV) formatted input files, making it very easy for 121 

users to modify the input datasets. They are also based on the EEA’s emission calculation method 122 

and equipped with a complete QA and visualization tool based on Python and R libraries. However, 123 

it is not an easy task to update the emission factors, and generate other required input datasets for 124 

other countries, and lacks support for any control strategy plan feature to generate a responsive 125 

reduced emissions inventory for policymakers, stakeholders, and modelers.  126 

The VAPI (Vehicular Air Pollution Inventory) model was developed in India because the 127 

country does not have an extensive and robust traffic-related dataset to run these kinds of vehicular 128 

emissions inventory models (Nagpure et al., 2016; Perugu, 2019). 129 

There are also a few shortcomings of incorporating these bottom-up models into CTM 130 

studies. These models require strong programming skills to operate, such as collecting and 131 

preparing the input data to fit the model requirement, configuring the model variables, and 132 

changing specific variables that may be hidden somewhere. Another downside is that while the 133 

administration-level emissions inventory can be estimated by those models, it requires a 3rd party 134 

emissions processor like the SMOKE (Sparse Matrix Operator Kerner Emissions) modeling 135 

system (Baek and Seppanen, 2021) to process and generate spatially and temporally resolved 136 

emissions inputs for CTM. Some detailed information, like link-level hourly driving patterns, can 137 

be lost in the emissions processing steps. 138 

There is no single model capable of meeting all the requirements across various spatial and 139 

temporal scales (Pinto et al., 2020). However, transparency, simplicity, and a user-friendly 140 

interface are requirements for those who mainly work in transportation policy and air quality 141 

modeling development (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Sallis et al., 2016; 142 
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Sun et al., 2016; Tominaga and Stathopoulos, 2016). Thus, the ideal mobile emissions modeling 143 

system would be computationally optimized, easy-to-use, and have a user-friendly interface. 144 

Additionally, the model should easily adapt detailed local activity information and the state-of-art 145 

emission factors as an input to represent them in the highest resolution possible in time and space.  146 

We have developed the Comprehensive Automobile Research System (CARS) to meet these 147 

requirements, especially for the air quality research community, policymakers, and air quality 148 

modelers. The CARS is a stand-alone, fully modularized, computationally optimized, python-149 

based automobile emission model. The modularization improves the efficiency of processing times. 150 

Once district and road-link level annual/monthly/daily total emissions are computed, the rest of 151 

the processes are optional. It can generate chemically speciated, spatially gridded hourly emissions 152 

for CTMs without any 3rd party emissions modeling system to develop the highest quality CTM-153 

ready emissions inputs. All functions are operated by independent modules and can be enabled by 154 

users. Details on modularization will be discussed later. The CARS model can be easily adopted 155 

and is simple for users to add new functions or modules in the future. The application of the CARS 156 

to South Korea will be described in detail later. 157 

2 CARS Emissions Calculation 158 

The CARS is an open-source Python-based customizable motor vehicle emissions 159 

processor that estimates onroad and offroad emissions for specific criteria and toxic air pollutants. 160 

Figure 1 is a schematic of the CARS overview. It applies vehicle, engine, and fuel specific 161 

emission factors to traffic data to estimate the local level annual, monthly, and daily total emissions 162 

inventory. The emissions inventory calculations require the list of pollutant-specific emissions 163 

factors by vehicle age, local activity data, average speed profile/distribution by road type, and 164 

geographic information system (GIS) road segment shapefiles inputs. The spatial resolution of 165 

VKT defines the CARS geographic scale (i.e. district, county, state, and country) for emission 166 

calculations. Unlike the district-level Korea Clean Air Policy Support System (CAPSS) 167 

automobile emission inventory (Lee et al., 2011a; Lee et al., 2011b), the CARS applies high-168 

resolution annual average daily traffic (AADT) data from the road GIS shapefiles to distribute the 169 

total district emissions into road link-level emissions. Optionally, these road link-level emissions 170 

can be used to generate spatially gridded CTM-ready emissions input data once the output 171 

modeling domain is defined. How the CARS estimates spatially and temporally enhanced 172 

automobile emissions inventories will be discussed in detail next chapter. 173 

South Korean traffic databases by the Korea CAPSS team (Lee et al., 2011b) from the 174 

National Institute of Environmental Research (NIER) were used in this study to compute the 175 

updated onroad automobile emissions inventory. The databases include individual vehicle activity 176 

data (daily total VKT), road activity data (average speed distribution by road), vehicle age specific 177 

emission factors, road type information, surface weather data, and GIS road shapefiles.  178 
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2.1 Individual Daily Total VKT Activity Data 179 

The accuracy of vehicle emissions inventories from CARS significantly depends on the 180 

quality of traffic density information. To accurately represent traffic density for the CARS, this 181 

study imported the national registered vehicle-specific daily total VKT from South Korea’s 182 

Vehicle Inspection Management System (VIMS), which belongs to the Korea Transportation 183 

Safety Authority (KTSA). It contains over 50 million records from 2013 to 2017. For the CARS 184 

model, we first sorted these records by the vehicle identification number (VIN) to remove any 185 

duplicates and then built vehicle-specific daily total VKT traffic activity data in the CSV format. 186 

The summary of those vehicle numbers and VKTs is presented in Fig. 2. Sedan vehicles using 187 

gasoline fuel comprise the greatest percentage of total vehicles at 47% (~10.4 million) and have 188 

the highest VKT. Most vehicles demonstrate similar patterns between the number of vehicles and 189 

daily VKT. However, as expected, LPG (liquefied petroleum gas)-fueled taxi are high in VKT 190 

compared to the number of vehicles due to their daily long distance travel pattern. 191 

Besides the numbers of vehicles, the vehicle type (v) and the VIN are applied to individual 192 

vehicles to calculate their daily total VKT or VKTv,age (km d-1). In Eq. (1), the individual vehicle 193 

VKT with the manufactured year (VKTv,age) is calculated based on the cumulative mileage (Mf) 194 

since the last inspection date (Df) and registration date (D0). Korea’s NIER defines the vehicle 195 

types (Ryu et al., 2003; Ryu et al., 2004; Ryu et al., 2005; Lee et al., 2011a)  based on a combination 196 

of vehicle types (e.g., sedan, truck, bus, etc), engine sizes (e.g., compact, full size, midsize, etc) 197 

and fuel types (e.g., gasoline, diesel, LPG, etc). Full details of vehicle types and daily total VKT 198 

are shown in Appendix A and B.  199 

𝑉𝐾𝑇𝑣,𝑎𝑔𝑒 =
𝑀𝑓;𝑣,𝑎𝑔𝑒

𝐷𝑓;𝑣,𝑎𝑔𝑒 − 𝐷0; 𝑣,𝑎𝑔𝑒
  (1) 200 

2.2 Emission Calculations 201 

Automobile emission sources cover motorized engine sources from network (onroad) and 202 

off-network (nonroad). Nonroad transportation sources represent any motorized engine vehicle 203 

emissions that occurred from off-network roads, such as aviation, railways, construction, and boats. 204 

Onroad automobile emissions are ones that occur on the network roads. While nonroad automobile 205 

emissions are important, we will focus on the onroad automobile emissions from network roads 206 

using their local traffic-related datasets. The following section explains the approach of the onroad 207 

automobile emission processes. The onroad emission (Eonroad) in the CARS is defined in Eq. (2), 208 

which includes three major emission processes (Ntziachristos and Samaras, 2000): 209 

𝐸𝑜𝑛𝑟𝑜𝑎𝑑 = 𝐸ℎ𝑜𝑡 + 𝐸𝑐𝑜𝑙𝑑 + 𝐸𝑣𝑎𝑝  (2) 210 
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The hot exhaust emissions (Ehot) are the vehicle’s tailpipe emissions when the internal combustion 211 

engine (ICE) combusts the fuel to generate energy under the average operating temperature. The 212 

cold start emissions (Ecold) are the tailpipe emissions from the ICE when the cold vehicle engine is 213 

ignited and the operational temperature is below average condition. The evaporative VOC 214 

emissions (Evap) are the emissions evaporated/permeated from the fuel systems (fuel tanks, 215 

injection systems, and fuel lines) of vehicles. 216 

The CARS first applies the hot exhaust emission factors by vehicle type, age, fuel, engine, 217 

and pollutants to individual daily total VKT to compute the hot exhaust emissions. The rest of the 218 

processes for cold start and evaporative emissions are calculated afterwards. The emission 219 

calculation methodologies used in the CARS model are based on tier 2 and tier 3 methodologies 220 

from the EEA’s mobile emission inventory guidebook (EEA, 2019) to be consistent with Korea’s 221 

National Emission Inventory System (NEIS) (Lee et al., 2011a). 222 

2.2.1 Hot Exhaust Emissions 223 

Hot exhaust emission, which is from the vehicle’s tailpipe, is the exhaust gas from the 224 

combustion process in an ICE. The ICE combustion cycle generally causes incomplete combustion 225 

processes which emit hydrocarbons, carbon monoxide (CO), and particulate matter (PM) into the 226 

atmosphere. The sulfur compounds in the fuel are oxidized and become sulfur oxides (SOx). 227 

Nitrogen oxides (NOx) are similarly produced during the combustion process due to the abundant 228 

nitrogen (N2) and oxygen (O2) in the atmosphere. 229 

Equation 3 represents the calculation of daily individual vehicle hot exhaust emission rate, 230 

Ehot; p,v,age (g d-1) of pollutant (p). An individual vehicle-specific daily VKTv,age (km d-1) is estimated 231 

by Eq. (1). The EFhot;p,v,age,s (g/km) is the hot exhaust emission factor of pollutants (p) for the 232 

vehicle type (v), vehicle age (age), and average vehicle speed (s). The district's total emission rate 233 

is the total hot exhaust emissions from all individual vehicles within the same district.   234 

𝐸ℎ𝑜𝑡; 𝑝,𝑣,𝑎𝑔𝑒 = 𝐷𝐹𝑝,𝑣,𝑎𝑔𝑒 × 𝑉𝐾𝑇𝑣,𝑎𝑔𝑒 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑎𝑔𝑒,𝑠  (3) 235 

The deterioration factor (DF) in Eq. (3) is an optional function in the CARS model that can 236 

be turned on or off by users. This deterioration process is caused by vehicle aging and can lead to 237 

the increase of vehicle emissions. The CARS model applies the vehicle registration year to 238 

estimate the deterioration factor as additional emissions, which vary by vehicle type and pollutant. 239 

According to the guidance of deterioration factors calculation from NIER, there is no deterioration 240 

in a new vehicle in their first five years. After five years, the deterioration factors can increase the 241 

range by 10% depending on the type of vehicle and pollutants. Deterioration processes can cause 242 

a 50% or 100% increase of emissions in fifteen-year-old vehicles. Currently, the DF is an empirical 243 

coefficient that varies by vehicle age (Lee et al., 2011a).  244 
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The hot exhaust emission factor, EFhot;p,v,s (g/km) is a function of vehicle speed (s) with 245 

other empirical coefficients: a, b, c, d, f, k. The emission factor formula and those coefficients were 246 

developed by NIER CAPSS (Lee et al., 2011a). These coefficients are varied by pollutants (p), 247 

vehicle type (v), vehicle age (age), and vehicle speed (s). The vehicle speed affects the combustion 248 

efficiency of an ICE and impacts the emission rates and its composition from the tailpipe.  249 

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑎𝑔𝑒,𝑠 = 𝑘(𝑎 × 𝑠𝑏 + 𝑐 × 𝑠𝑑 + 𝑓)  (4) 250 

While vehicle speed plays a critical role in hot exhaust emissions from most vehicles, NOx 251 

emissions from some diesel vehicles show sensitivity to local ambient temperature along with 252 

vehicle speed (Ntziachristos and Samaras, 2000). Figure 3 shows the dependency of NOx emission 253 

factors from compact diesel vehicles to vehicle speed (Fig. 3a) and ambient temperature (Fig. 3b). 254 

Figure 3a shows a significant decrease of NOx emissions while speed increases. Figure 3b 255 

demonstrates the significance of local meteorology on NOx emissions from a compact diesel sedan. 256 

Based on these NIER’s CAPSS emission factors, the sensitivity to local ambient temperature is 257 

limited to NOx pollutant emissions from diesel vehicles.  258 

Due to its high sensitivity to the vehicle operating speed, it is important for the CARS to 259 

simulate realistic speed patterns for accurate emissions estimates. When a constant single speed is 260 

assigned to compute hot exhaust emissions, it won’t reflect the emissions under low-speed 261 

circumstances, which could cause higher emissions due to its incomplete ICE combustion. To 262 

overcome this limitation, the CARS has adopted the 16 average speed bins concepts for a better 263 

representation of vehicle speed distribution that varies by road type (i.e., local, highway, 264 

expressway). We have implemented a feature for the CARS optionally to apply road-specific 265 

average speed distributions (ASD) (Abin,r), which represents the fractions of 16-speed bins (bin) 266 

(from 0 to 121 km h-1 defined in Appendix E) for eight different road types (r) (No.101-108, shown 267 

in Appendix C) as classified by CAPSS (Fig. 4). Although ASD patterns vary by region, we did 268 

not implement the regional variations of ASD due to the lack of region-specific vehicle speed 269 

measurements in South Korea.  270 

In this study, we developed the most realistic ASDs for eight different road types (No. 101-271 

108) in South Korea based on the latest road link-specific average speed and AADT from the GIS 272 

road network shapefiles (NIER, 2018) and the U.S. EPA’s MOVES ASD datasets (USEPA, 2020).  273 

Because a single average speed was assigned to each road link, the ASDs based on South Korea’s 274 

GSI road shapefiles did not capture the low-speed range (<16 km h-1) that occurs in reality. 275 

Therefore, we incorporated the ASD developed by U.S. EPA with Georgia state ASD to improve 276 

the representation of the low-speed range (speed bin #1 and #2). We modified the total fractions 277 

of low-speed bins (the 2:1 ratio of fractions of bin #1 and #2) by adding 2% of distribution for 278 

interstate expressways, 3% of distribution for urban expressways, 7% of distribution for all 279 

highways, and 15% for all local roads. Further, those increases of low-speed bins reduced the 280 
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distributions of other higher speed bins homogeneously due to the renormalization of fractions by 281 

road type. Figure 4 shows the renormalized ASDs of all road types applied in this study.  282 

 While 16-speed bins ASD application is critical to computing more realistic hot exhaust 283 

emissions, there should be some restrictions on certain road types. Users can adjust the restricted 284 

roads control table input file to limit the vehicle types that can only be operated on a particular 285 

road type. For example, motorcycles are limited to local roads (No. 104, 106, and 107), but not on 286 

expressways (No. 101, 102, 103, 105, and 108) due to its traffic regulation rules. Heavy trucks are 287 

only allowed on the highway (No. 101, 102, 103, 105, and 108.) by law. The details of the road 288 

restriction control table format can be found on the CARS’s user’s guide from the CARS Github 289 

website (https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual). 290 

The 16-speed bins averaged speed distribution calculated by road type (Abin,r) and road type 291 

weight factors (𝜔r,d) in a district (d) from Eq. (13) are added to the CARS hot exhaust emissions 292 

equation (Eq. 3). The hot exhaust emissions from individual vehicles (Ehot;p,v,age) can be calculated 293 

by considering road-specific speed bins distribution (Eq. 5). Although the vehicles may be 294 

operated in different districts from their registered district, this is our best method to estimate the 295 

vehicle speed for hot exhaust emissions. 296 

𝐸ℎ𝑜𝑡; 𝑝,𝑣,𝑎𝑔𝑒 = 𝐷𝐹𝑝,𝑣,𝑎𝑔𝑒 × ∑ (𝑉𝐾𝑇𝑣,𝑎𝑔𝑒 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑎𝑔𝑒,𝑠𝑏𝑖𝑛 × 𝐴𝑏𝑖𝑛,𝑟)  (5) 297 

2.2.2 Cold Start Emissions 298 

The cold start emissions occur when a cold-engine vehicle is ignited. The lower 299 

temperature of the ICE is not an optimal condition for complete fuel combustion. This process 300 

lowers the combustion efficiency (CE) and increases the emissions of hydrocarbon and CO 301 

pollutants from the tailpipe exhaust (Jang et al., 2007). The CARS can estimate the cold start 302 

emissions for vehicles using gasoline, diesel, or liquefied petroleum gas (LPG) fuel. Besides the 303 

vehicle and engine type, road type also plays a critical role in the quantity of cold start emissions 304 

because it occurs mostly in parking lots and rarely on highways.  305 

 The cold start emission, Ecold
 (g d-1), is derived from the hot exhaust emissions, the ratio of 306 

hot to cold exhaust emissions (EFcold/EFhot -1.0), and the percentage of the traveled distance with 307 

a cold engine (Eq. 6).  308 

𝐸𝑐𝑜𝑙𝑑; 𝑝,𝑣 = 𝛽𝑇 × 𝐸ℎ𝑜𝑡; 𝑝,𝑣 × (
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
− 1.0)  (6) 309 

The emission factor of cold start emissions (EFcold) is not directly calculated from 310 

measurement data like hot exhaust emissions (Ehot;p,v), but measured under different ambient 311 

temperatures (T). The CARS model applies linear regression models developed by CAPSS to 312 

estimate the increasing ratio of cold start to hot exhaust emissions (EFcold/EFhot) under different 313 
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temperatures (T) (Eq. 7). In this equation, A and B are the empirical coefficients that vary by the 314 

pollutants (p) and vehicle type (v). 315 

(
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
) = 𝐴𝑝,𝑣 + 𝐵𝑝,𝑣 × 𝑇  (7)  316 

 is the percentage of the distance traveled under a cold engine. It also depends on the 317 

ambient temperature. Cold ambient temperatures cause a longer distance traveled under a cold 318 

engine due to the slower heating time. According to the CAPSS database for Seoul city (Lee et al., 319 

2011a), the empirical linear equation for   is shown in Eq. (8). This formula represents how 320 

ambient temperature affects  . For example, when the average temperature is -2°C,   is 34.8%. 321 

In summer, the monthly average temperature is 25.7°C, which causes  to drop to 21%.  322 

𝛽 = 0.647 − 0.025 × 12.35 − (0.00974 − 0.000385 × 12.35) × 𝑇  (8) 323 

2.2.3 Evaporative VOC Emissions 324 

 Evaporative emissions are emissions from vehicle fuel that are evaporated into the 325 

atmosphere. This occurs in the fueling system inside the vehicle, such as fuel-tanks, injection 326 

systems, and fuel lines. Diesel vehicles, however, can be exempted due to diesel fuel’s low vapor 327 

pressure. The primary sources of evaporative emissions are breathing losses through tank vents 328 

and fuel permeation/leakage. The CARS model adopted the EEA’s emission inventory guidebook 329 

(EEA, 2019) to account for three mechanisms to estimate the evaporative VOC emissions (Evap): 330 

diurnal emissions from the tank (ed), hot and warm soak emissions by fuel injection type (Sfi), and 331 

running loss emissions (R) (Eq. 9). Unlike CAPSS, there is a conversion factor (0.075) applied to 332 

Evap for motorcycles to prevent an over-estimation of VOC. 333 

𝐸𝑣𝑎𝑝; 𝑝,𝑣 = (𝑒𝑑; 𝑝,𝑣 + 𝑆𝑓𝑖; 𝑝,𝑣 + 𝑅𝑙; 𝑝,𝑣)  (9) 334 

Diurnal emissions, ed (g d-1), during the daytime are caused by the ambient temperature 335 

increase and the expansion of fuel vapors inside the fuel tank. Most of the current fuel tank systems 336 

have emission control systems to limit this kind of evaporative VOC emissions. The ed can be 337 

calculated with the empirical Eq. (10), which was developed by CAPSS. Tl is the monthly average 338 

of the daily lowest temperatures and Th is the monthly average of the daily highest temperatures. 339 

The empirical coefficient α is 0.2, which represents how 80% of emissions are eliminated by the 340 

vehicle emission control system. 341 

𝑒𝑑 = 𝛼 × 9.1𝑒𝑥𝑝 [0.3286 + 0.0574 × (𝑇𝑙) + 0.0614 × (𝑇ℎ − 𝑇𝑙 − 11.7)] (10) 342 

Soak emissions (Sfi) occur when a hot ICE is turned off; the remaining heat from the ICE 343 

can increase the fuel temperature in the system. The carburetor float bowls are the major source of 344 
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the soak emissions. Newer vehicles with fuel injection and return-less fuel systems do not emit 345 

soak emissions. Because most of the current vehicles in South Korea have a new fuel system, soak 346 

emissions (Sfi) in the CARS model are set to 0.  347 

The running loss emissions (Rl) are from vapors generated in the fuel tank when a vehicle 348 

is in operation (Eq. 11). In some older vehicles, the carburetor and engine operation can increase 349 

the temperature in the fuel tank and carburetor, which can cause a significant increase in 350 

evaporative VOC emissions. VOC emissions from running loss can be greatly increased during 351 

warmer weather. However, newer vehicles with fuel injection and return-less fuel systems are not 352 

affected by the ambient temperature. Because most vehicles in South Korea do not use carburetor 353 

technology, we expect running loss emissions to have the least impact (Lee et al., 2011b).  354 

𝑅𝑙 = 𝛼 × 𝐿𝑟,𝑣 × [(1 − 𝛽) × 𝑅ℎ + 𝛽 × 𝑅𝑤]  (11) 355 

The empirical coefficient α is 0.1 here, which represents that 90% of the running loss is 356 

avoided by the newer fuel system. L is the distance traveled (km) by road and is the same one used 357 

in hot exhaust emission calculations.  is the same parameter from Eq. (8). The Rh and Rw are the 358 

average emission factors from running loss under hot and warm/cold conditions, respectively.  359 

2.3 Road Link-Level Emissions Calculations 360 

In general, district-level automobile emissions calculations are driven by district-level 361 

averaged vehicle activity and operating data, which do not reflect realistic spatial patterns of 362 

onroad automobile emissions.  The CARS model introduces road link-specific traffic data by 363 

default to develop spatially enhanced road link-specific emissions that reflect more representative 364 

emissions by road link. This high-resolution traffic data is a GIS shapefile that is composed of 365 

many connected segments, which are called “road links.” All road links hold information such as 366 

start/end location coordinates, AADT, road link length, averaged vehicle speed, and road type (No. 367 

101-108).  368 

The CARS model applies link-level AADT (AADTd,r,l., d-1) and road length (Ld,r,l) to 369 

compute the road link-specific VKT (VKTd,r,l, km d-1) in Eq. (12). The road links are identified by 370 

district (d), road type (r), and link (l) labels. The road VKT is a parameter that reflects the traffic 371 

activity of each road link and it is different from individual daily vehicle activity data (VKTv,age) 372 

in Eq. (1).  373 

𝑉𝐾𝑇𝑑,𝑟,𝑙 = 𝐴𝐴𝐷𝑇𝑑,𝑟,𝑙 ×  𝐿𝑑,𝑟,𝑙  (12) 374 

Road link-specific VKT (VKTd,r,l) is used to redistribute the district total emissions (Eonroad) 375 

from Eq. 2 into road link-level emissions. The following three weight factors are computed: the 376 

district weight factors, ωd (Eq. 13), the road type weight factors, ωd,r (Eq. 14), and the road-link 377 
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weight factors, ωd,l (Eq. 15). The weight district factors (ωd) are the renormalization of each 378 

district's total VKT over state-level total VKT (N is the number of districts). The main reason we 379 

performed the renormalization over state-level total VKT is to reflect daily traffic patterns from 380 

multiple districts under the assumption that most vehicles travel within the same state. The road 381 

type weight factors by district (ωr,d) are used to compute road-specific emissions, while road-382 

specific averaged speed distributions (ASD; As,r) from Eq. (5) are applied to capture vehicle 383 

operating speeds by road type. The road link weight factors (ωd,l) are then applied to redistribute 384 

the district emissions into road link-level emissions.  385 

 386 

𝜔𝑑 =
∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟

1

𝑁
∑ ∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟𝑑

  (13) 387 

𝜔𝑑,𝑟 =
∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (14) 388 

𝜔𝑑,𝑙 =
𝑉𝐾𝑇𝑑,𝑟,𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (15) 389 

3 CARS Configuration 390 

The CARS model is an open-source program based on Python (Guido van Rossum, 2009) 391 

that allows the users to efficiently apply open-source modules to develop programs. Users can 392 

easily install Python development tools and load customized packages and modules to set up the 393 

CARS development environment. All CARS modules are developed using Python v3.6. Other than 394 

the GIS road shapefiles, all input files are based in the ASCII CSV format, which can be easily 395 

handled by both spreadsheet programs and programming languages, making it more accessible for 396 

users of all skillsets. The CARS can not only estimate district-level and spatially enhanced road 397 

link-level emissions, but can also generate hourly chemically speciated gridded emissions for 398 

CTMs. In addition, the CARS also generates various summary reports, graphics, and 399 

georeferenced plots for quality assurance. 400 

The required Python modules for the CARS are: “geopandas,” “shapely.geometry”, and 401 

“csv” modules to read the shapefiles and table data files. The “NumPy” and “pandas” modules 402 

are used to operate the memory arrays and scientific calculations while the “pyproj” module deals 403 

with converting the projection coordinate systems. “matplotlib” is for generating any type of 404 

figures/plots. Furthermore, the CARS model can also read and write Climate and Forecast (CF)-405 

compliant NetCDF-formatted files using “NetCDF4”.  406 

The first process in the CARS is “Loading_function_path”; it allows users to define and 407 

check the input file paths. Once all input files are checked, there are six process modules in CARS 408 

to process inputs, compute emissions, and generate various output files, including QA reports. 409 
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Figure 5 is the schematic of the CARS that consists of six process modules with various functions. 410 

The six process modules are (1) “Process activity data”, (2) “Process emission factors”, (3) 411 

“Process shapefile, (4) “Calculate district emissions”, (5) “Grid4AQM”, and (6) “Plot figures”. 412 

The main purpose of modularizing the CARS is to meet the needs of various communities, such 413 

as policymakers, stakeholders, and air quality modelers. While modules (1) through (4) are 414 

required to develop the district-level and road link-level emissions inventories, module (5) 415 

“Grid4AQM” is optional depending on if users want to develop chemically-speciated gridded 416 

hourly emissions for CTMs. Also, the modularity system in the CARS allows users to bypass 417 

certain modules if it has been previously processed without any changes. For example, if there is 418 

no change in traffic activity, emission factors table, or GIS shapefiles, users do not need to run 419 

these modules and can simply read the data frame outputs and then run “Grid4AQM” for the 420 

modeling dates and domain. The “Grid4AQM” module will not only improve the computational 421 

time for CTMs but also eliminate the need for a 3rd party emissions modeling system like SMOKE 422 

(Baek and Seppanen, 2021). 423 

The rectangle boxes in Fig. 5 represent the data array and the boxes with rounded edges are 424 

the functions in the CARS. Details on the CARS code, input table format, and functions setup 425 

information can be found on the CARS GitHub website (Pedruzzi et al., 2020). 426 

The “Process activity data” module first reads the vehicle activity data, such as an 427 

individual vehicle's daily total VKT based on its registered district. The “Process emission factors” 428 

module reads and stores the emission factors table that holds all pollutant emission factors to 429 

estimate the emissions for all vehicles. Meteorology-sensitive emission factors are only limited to 430 

NOx pollutants. District boundary GIS shapefiles and road network shapefiles are processed 431 

through “Process shape file” to generate the VKT-based redistribution weighting factors from Eq. 432 

(13), (14) and (15) for the “Calculate district emissions” module to compute district-level and 433 

road link-level emission rates (metric tons per year, t yr-1). 434 

The redistributed emission rates (t yr-1) from the “Calculate district emissions” module 435 

present annual total emission rates until district-level VKTs from the “Process activity data” 436 

module are added. Then, the “Grid4AQM” module can generate CTM-ready chemically speciated 437 

emissions. The “Read_chemical” function from the “Grid4AQM” module is designed to process 438 

the chemical speciation profile that can convert the inventory pollutants such as CO, NOX, SO2, 439 

PM10, PM2.5, VOC, and NH3, into the chemically lumped model species that CTM requires for 440 

chemical mechanisms, such as SAPRC (L. and Heo, 2012) and Carbon Bond version 6 (CB6) 441 

(Yarwood and Jung, 2010). The “Read_temporal” function processes the complete set of monthly, 442 

weekly, and hourly temporal allocation profiles that can convert annual total emissions to hourly 443 

emissions. “Read_griddesc” defines the CTM-ready modeling domain and computes the gridding 444 

fractions for all road link-level emissions by overlaying the modeling domain over the GIS 445 

shapefiles. Once annual total emissions are chemically speciated, spatially gridded, and temporally 446 

allocated into hourly emissions, the “Gridded_emis” function will combine emission source-level 447 
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conversion fractions from each function (Read_chemical, Read_temporal, and Read_griddesc) to 448 

generate the CTM-ready chemically speciated, gridded hourly emissions in the NetCDF binary 449 

format. The “Plot Figures” module is designed for generating various summary reports and 450 

graphics to assist users in understanding the estimated automobile emissions inventory computed 451 

by the CARS. The following section will describe the detailed processes of the “Grid4AQM” 452 

module, which includes chemical, spatial, and temporal allocations. 453 

3.1 Chemical Speciation 454 

To support CTMs applications, the CARS needs to be able to convert inventory pollutants 455 

into chemical lumped model species based on the choice of CTM chemical mechanisms. NOx 456 

includes  nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO). VOCs can represent 457 

hundreds of different organic carbon species, such as benzene, acetaldehyde, and formaldehyde. 458 

These grouped inventory pollutants cannot be directly imported into the chemical mechanism 459 

modules in the CTM system and require chemical speciation allocation for CTMs to process them 460 

during their chemical reactions. Therefore, the “Grid4AQM” module performs the chemical 461 

species allocation step prior to the temporal and spatial allocations to generate the gridded hourly 462 

emissions. The “Read_chemical” function in “Grid4AQM” module allows users to assign these 463 

emission inventory pollutants to CTM-ready surrogate chemical species (a.k.a lumped chemical 464 

species) by vehicle, engine, and fuel type. For example, VOC emissions from diesel busses can be 465 

converted into the following composition based on its chemical allocation profile: alkanes (68%), 466 

toluene (9%), xylenes (8%), alkenes (4%), ethylene (2%), benzene (1.3%), and unreactive 467 

compounds (7%) when CB6 chemical mechanism is selected. Further details on the chemical 468 

speciation profile input formats are available in the CARS user’s guide. 469 

3.2 Spatial Allocation 470 

The “Calculate district emissions” module calculates not only the total district emissions 471 

but also road link-specific emissions based on road link-specific AADT data from road network 472 

GIS shapefiles. The “Calculate district emissions” module first gets the district total vehicle 473 

emissions (Eq. 2) based on the district-level VKTs, and then the normalized district total emissions 474 

by district weight factor, ωd (Eq. 13). Afterwards, the normalized district total emissions are 475 

redistributed into every road link using road link-level weight factors (ωd,l) (Eq. 15). The district 476 

total emissions from Eq. (2) and from Eq. (15) remain the same. Then the computed road link-477 

level emissions then will be converted into grid cell emissions using the modeling domain grid cell 478 

fractions computed in the “Read_griddesc” function in the “Grid4AQM” module. 479 
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3.3 Temporal Allocation 480 

Once chemical and spatial allocations are completed, the final step to support CTM 481 

application is a temporal allocation that converts the annual total emissions from the “Calculate 482 

district emissions” module into hourly emissions. The “Read_temporal” temporal allocation 483 

function in the “Grid4AQM” module converts the annual emission rate (t yr-1) to the hourly 484 

emission rate (mol hr-1) using monthly, weekly, and weekday/weekend diurnal temporal profiles. 485 

This module processes these temporal profile inputs, which are the monthly (January - December), 486 

weekly (Monday - Sunday), and weekday/weekend 24 hour profile tables (0:00-23:00 LST). The 487 

users can assign these temporal profiles with a combination of vehicle, engine, fuel, and road types 488 

to enhance their temporal representations in detail. 489 

3.4 Chemical Transport Model Emissions 490 

The main goal of the “Grid4AQM” module is to generate temporally, chemically, and 491 

spatially enhanced CTM-ready gridded hourly emissions. First, it reads the CTM modeling domain 492 

configuration and then overlays it over the road network GIS shapefile and district-boundary 493 

shapefile to define the modeling domain. This overlaying process between the road network, 494 

district boundary GIS shapefiles, and modeling domain allows the “Grid4AQM” module to 495 

compute the fraction of road links that intersects with each grid cell. Figure 6 demonstrates how 496 

the district boundary and road network GIS shapefiles are used to perform the spatial allocation 497 

processes in CARS. Figure 6a is a native road link shapefile of Seoul with AADT, VKT, district 498 

ID, and road type. Figure 6b presents an overlay of  two districts’s road links (purple and blue) 499 

over the selected region. State total emissions will be renormalized into weighed district total 500 

emission data and then redistributed into the road link. Figure 6c illustrates how the weighted road 501 

link-level emissions get allocated into modeling grid cells for CTMs. The link-level VKT (VKTd,r,l) 502 

from Eq. (12) will be used to compute a total of traffic activity fractions by grid cell and then use 503 

that to assign the link-level emissions from Eq. (2) into each grid cell. When a road link intersects 504 

with multiple grid cells, the “Grid4AQM” module will weigh the emissions by the length of the 505 

link that intersects with each grid cell. 506 

Through the overlay process, the CARS model can generate various types of output data, 507 

such as total district emissions, link-level emissions, and CTM-ready gridded emissions. For 508 

example, the CO vehicle emissions from the Seoul metropolitan in South Korea are presented in 509 

three different output formats in Fig. 7. Figure 7a shows the annual mobile PM2.5 emissions by 510 

district. The road link level annual emissions are presented in Fig. 7b. Furthermore, the CARS 511 

applies the link-level emissions from Fig. 7b to generate the hourly grid cell emission data with a 512 

1 km × 1 km resolution for the CTM in Fig. 7c.  513 
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3.5 National Control Strategy Application 514 

One of the unique features in the CARS compared to other mobile emissions models is that 515 

it can promptly develop controlled mobile emissions responding to the national emergency high 516 

PM2.5 episodes. It is very common to experience high PM2.5 episodes, especially during the 517 

wintertime in South Korea due to domestic and international primary and secondary air pollutants 518 

emissions. When the 72 hour forecasted PM2.5 concentration exceeds the average 50 µg/m3 (0:00-519 

16:00 LST), the national PM2.5 emergency control strategy is activated for ten days. It applies a 520 

nationwide vehicle restriction policy within 24 hours. It enforces a limit on what kind of vehicles 521 

can be operated on a certain date. The restrictions can be applied in the following ways: the 522 

closures of public parks and government facilities, and restrictions of certain vehicles based on 523 

their fuel type and age, which is a major factor of engine deterioration. This policy will limit the 524 

number of vehicles on the network roads significantly, which could reduce primary PM2.5 and 525 

precursor pollutant (NOx, NH3, and VOC) emissions, especially from heavily populated 526 

metropolitan regions (Choi et al., 2014; Kim et al., 2017a; Kim et al., 2017b; Kim et al., 2017c). 527 

To understand the impacts of an even/odd vehicle restriction policy in real-time, we need to 528 

quickly develop a rapid control response emissions for the air quality forecast modeling system. 529 

The process of generating the controlled mobile emissions can take a long time if we start fresh. 530 

Thus, we have implemented this control strategy as an optional “Control Factors” function in the 531 

“Calculate district emissions” in the module for users to quickly and easily generate the 532 

controlled mobile emissions with consideration of the limited number of vehicles based on the 533 

vehicle, engine, fuel, and vehicle manufactured year. A one hundred percent (100%) control factor 534 

means that there are no emissions from those selected vehicles. 535 

Because of the modularization system in the CARS, we can bypass some computationally 536 

expensive data processing modules (i.e., “Process activity data”, “Process emission factors”, 537 

and “Process shape file”) and let the “Calculate district emissions” module quickly apply control 538 

factors while it computes the district-level mobile emission inventory from Eq. (2).  This will allow 539 

users to reduce the computational time to generate the controlled mobile emissions under a specific 540 

control scenario and develop the controlled CTM-ready gridded hourly emissions using the 541 

“Grid4AQM” module.  542 

3.6 Computational Time 543 

While the CARS can generate a high-quality spatiotemporal emission inventory for 544 

policymakers, stakeholders, and air quality modelers, it is quite critical for the CARS to generate 545 

these complex mobile emissions effectively and accurately without being at the expense of 546 

computational time. This is especially important to meet the needs for an air quality forecast 547 

modeling system responding to a national emergency control strategy implementation. 548 
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In this section, we will discuss the details of the CARS computational modeling performance.  549 

While the CARS model has been highly optimized, the modularization of CARS has also improved 550 

its modeling performance with optional module runs. The breakdown of module-specific 551 

computational time estimates based on the benchmark CARS runs are listed in Table 1. The 552 

benchmark CARS case includes a total of 24,383,578 daily VKT datasets from KSTA over two 553 

different years, 84,608 emission factors for all pollutants across a combination of vehicle-age-554 

engine-fuel types, 385,795 road links from the GIS road network shapefiles, 5,150 districts/16-555 

states boundary GIS shapefile, and 5,494 grid cells (=82 rows and 67 columns) for CTMs. Without 556 

any computational parallelization, the total processing time of all six modules usually takes around 557 

a half hour to generate a single day CTM-ready gridded hourly emission file. However, it can be 558 

further shortened to 25-30 minutes on a higher performance computer. Because of the modular 559 

system implemented in the CARS, generating one month (31 days) long gridded hourly emissions 560 

from CTMs do not require over 15 computational hours, but only around 100 minutes on high-561 

performance computers. The maximum usage of RAM can reach up to 11 GB. Table 1 shows the 562 

breakdown of computational time by each module from two different hardwares (desktop and 563 

laptop computers). The numbers in parentheses beside the “Grid4AQM” module is the 564 

computational time for a single day versus 31 days. While the “Grid4AQM” module takes an 565 

average of 4.9 minutes for a single day emissions generation, processing a consecutive 31 days 566 

saves 46% more time, decreasing from 151.9 minutes (=4.9 minutes * 31 days) to 81.6 minutes.  567 

4 Results 568 

CARS and CAPSS Comparison 569 

The CARS model calculates the 2015 onroad automobile emissions based on the latest 570 

2015 emission factors and the 2015-2017 vehicle activity database in South Korea. The annual 571 

total emissions from CARS are compared against the ones from NIER CAPSS in Table 2. The 572 

CARS model estimated the following annual total emissions in units of metric tons per year (t yr-573 
1): NOx (301,794); VOC (61,186); CO (373,864), NH3 (12,453); PM2.5 (10,108), and SOx (172.0). 574 

Compared to NIER CAPSS, the CARS overestimated all pollutants except for NOx (-18% decrease) 575 

and SOx (-17% decrease). It overestimated the emissions of VOC by 33%, PM2.5 by 15%, CO by 576 

52%, and NH3 by 24%. Both NIER CAPSS and CARS shared the same emission factor tables, 577 

which hold over 84,608 emission factors for all pollutants across a combination of vehicle, age, 578 

engine, and fuel types.  579 

The difference between CAPSS and CARS approaches are caused by three reasons: First, 580 

the number of vehicles used in CARS is slightly higher (6%) than CAPSS data (1.3 out of 23 581 

million), as well as other key traffic-related activity inputs (i.e., vehicle age distribution, averaged 582 

speed distribution, etc). Secondly, the vehicle speed information assigned by vehicle and road type 583 

play a critical role in the differences between CAPSS and CARS. The CAPSS calculation was 584 
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based on the road-specific mean speed value or 80% of the speed limit as an input of vehicle 585 

operating speed by three road types (rural, urban, and expressway). In other words, CAPSS only 586 

assigns a “single-speed value” for each road type, and does not encounter the variation of vehicle 587 

speed during its operation on roads into the emissions calculation. Most running exhaust emissions 588 

occur during a vehicle’s low-speed operation due to its incomplete combustion of fuel, and it is 589 

critical to accurately represent the emissions across various speed bins in order to compute the 590 

correct emissions. The CARS model has an option to apply the average speed distribution (ASD) 591 

over 16 speed bins for eight road types (Fig. 4). The CARS speed distribution process can better 592 

represent the speed variations of vehicle speeds for each road type. A detailed analysis of the 593 

impact of vehicle speed will be discussed later in this chapter. Lastly, other advanced processes in 594 

the CARS, such as link-level AADT and district-level vehicle data (5,150 districts in South Korea), 595 

can reflect more spatial detail and variation than the CAPSS. The CAPSS only considers state-596 

level data (17 states in South Korea) and five road types (interstate expressway, urban highway, 597 

rural highway, urban local, and rural local). 598 

Figure 8 illustrates more details about the difference between the annual emissions from 599 

CARS to the CAPSS by pollutants and vehicle types. Sedan vehicles show the largest increase of 600 

VOC (33%), CO (41%), and NH3 (23%) in the CARS relative to CAPSS because almost 56% of 601 

total vehicle count (13.5 million) is composed of sedan vehicles. Also, sedan vehicles contribute 602 

51% of total VOC and 61% of total CO annual emissions. The VOC and CO emissions from sedans 603 

are largely affected by the average speed distribution process when compared to other vehicle 604 

types. Similarly, the largest decreases of NOx (-16%) and SOx (-18%) are from trucks because they 605 

are significant NOx (~50%) and SOx contributors (~27%) and their emission factors are sensitive 606 

to vehicle speed.  607 

Onroad Emissions Analysis  608 

 The CARS is a bottom-up emissions model, which utilizes local individual vehicle activity 609 

data, detailed local emission factors for every vehicle and fuel type, and localized inputs such as 610 

average speed distribution by road type and deterioration factor. It allows users to assess the 611 

detailed breakdown of localized emission contributions. Table 3 represents the individual air 612 

pollutants (NOx, VOC, PM2.5, CO, NH3, and SOx) emission contributions (t yr-1), fractions (%), 613 

and impact factors (IF) by the vehicle type and fuel system. The IF is defined by the normalized 614 

annual emissions with vehicle counts of each category (kg yr-1 per vehicle). The CARS also can 615 

provide the average daily VKT per vehicle, which is the total daily VKT divided by vehicle 616 

numbers, to explain the emission contributions in Appendix D. 617 

Diesel-fueled vehicles contribute the most of NOx emissions, which is over 85.3% (257,305 618 

t yr-1), although the number of diesel vehicles only amounts to approximately 35% of the total 619 

vehicles (Table 3a). While the diesel trucks emitted 49.1% (148,246 t yr-1) of total NOx with an IF 620 
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value of 47.9 (kg yr-1), the highest impact (IF = 340 kg yr-1) occurred from diesel buses with only 621 

a 8.51% contribution to the total NOx emissions. This is caused by the highest average daily VKT 622 

from diesel buses compared to other vehicles, which is expected in a highly populated metropolitan 623 

area like Seoul, South Korea. A diesel bus generally has a 3-5 times higher daily VKT (180 km d-624 
1) than other common vehicles (gasoline sedan: 34 km d-1, diesel truck: 57 km d-1). The second-625 

largest vehicle type is the CNG (compressed natural gas) bus (248 kg yr-1), which also has a higher 626 

VKT. Their average daily VKT is 212 km d-1, with only a 3.1% NOx contribution.  627 

For VOC emissions, over 12 million gasoline vehicles cause 52.1% (31,885 t yr-1) of the 628 

total VOC emissions, and the gasoline sedan is the highest contributor across all vehicle types, 629 

which is over 28,434 t yr-1 (46.5%) (Table 3b). Unlike NOx emissions, diesel vehicles only 630 

contribute 23.0% (14,070 t yr-1) of the total VOC emissions. Across the vehicle fuel types, the IF 631 

outcome indicates that CNG vehicles have the highest IF values for VOC, which is 247 kg yr-1 due 632 

to the relatively high VOC contribution (19% over total VOC) and a low number of heavy CNG 633 

vehicles. The IF of CNG trucks are 77.2 kg yr-1, but only contribute 0.2% to total VOC emissions. 634 

The IF of the CNG bus is 320 kg yr-1 and emits 19.5% of the total VOC. Comparing the IFs of 635 

buses across fuel types, the CNG bus emits less NOx but higher VOC than a diesel vehicle. Each 636 

CNG bus has about 33 times higher IF of VOC (320 kg yr-1) than a diesel bus (9.51 kg yr-1), and 637 

CNG buses released slightly lower NOx (248 kg yr-1) than diesel buses (340 kg yr-1) (Table 3a and 638 

3b). It indicates that a CNG bus is better for rural areas and a diesel bus is better for urban areas to 639 

control ozone, because the rural area is usually NOx limited for ozone formation and urban areas 640 

are VOC limited. 641 

The current South Korea CAPSS onroad emissions inventory does not consider the PM2.5 642 

emissions from tire and brake wear, which are the highest contributors of PM2.5 emissions from 643 

vehicles on roads. For that reason, diesel vehicles become the major source of PM2.5 emissions, 644 

which contributes over 98.5% (9,959 t yr-1) of the PM2.5 emissions based on the CARS 2015 645 

emissions (Table 3c). The diesel truck, SUV, and van are the three major sources, and their 646 

contributions of total PM2.5 are 53.6%, 21.4%, and 11.2%, respectively. Although over 52% of the 647 

vehicles are gasoline vehicles, their primary PM2.5 contribution is limited to 1.44%.  The diesel 648 

bus has the highest IF (2.83 kg yr-1), which is caused by the largest average daily VKTs. 649 

Similar to VOC emissions, CO is mostly emitted through the tailpipe due to incomplete 650 

internal combustion of fuel and share similar emissions distributions across vehicle and fuel types 651 

(Table 3d). Gasoline vehicles contribute most of the CO (220,390 t yr-1, 59.0%), and sedan vehicles 652 

are the primary source (178,121 t yr-1, 47.6%) of this out of all gasoline vehicles. Across vehicle 653 

types, bus shows the highest IF of CO (81.2 kg yr-1) due to its largest daily VKT. CO is the most 654 

abundant pollutant released from vehicles (373,864 t yr-1) across all pollutants from onroad 655 

automobile sources. Although CO is much less reactive than other vehicle VOCs (Rinke and 656 

Zetzsch, 1984; Liu and Sander, 2015), the majority of CO emissions from onroad automobile 657 

sources plays a critical role in generating 30% of hydroperoxyl radicals (HO2) and causing ozone 658 
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formation in urban areas (Pfister et al., 2019). Thus, CO is also another crucial precursor to ozone 659 

formation in urban areas. 660 

SOx emissions are related to the sulfur content within the fuel component; diesel has a 661 

higher sulfur content than any other fuels. Most SOx is contributed by diesel vehicles (93.8 t yr-1, 662 

54.5%) (Table 3e). Within diesel vehicles, trucks provide 26.5% of SOx (45. t yr-1). Although the 663 

SOx from sedan vehicles are slightly higher (~3.3%) than diesel trucks, the number of diesel trucks 664 

is only 29.6% of the number of gasoline sedans. Thus, diesel trucks have a higher IF than gasoline 665 

sedans. Across vehicle types, buses have the highest IF (0.095 kg yr-1) of SOx, and diesel buses in 666 

particular have the largest IF at 0.143 kg yr-1. 667 

The NH3 emissions table (table 3f) indicates that 98.7% of NH3 is from gasoline vehicles 668 

while diesel trucks only contribute 1.13%. The IF result also shows that the gasoline sedan has the 669 

most significant impact per vehicle (1.17 kg yr-1). 670 

According to the vehicle activity and the CARS model results, nearly half of the total 671 

vehicles (24.3 million) are gasoline sedans (10.4 million, 42.8%), and gasoline sedan vehicles 672 

contributed most of the VOC and CO emissions (46.5% and 47.6%), but only 7.7% of the total 673 

NOx emissions. The number of diesel vehicles is 8.6 million (35.4%); however, they emitted about 674 

85.3% of the total NOx and 98.5% of the primary PM2.5. These results indicated that the annual 675 

traffic-related mobile emissions are not only affected by the number of vehicles, but also by 676 

different vehicle and fuel types. Therefore, this study normalized the annual emissions by the 677 

number of vehicles to confirm the emission composition by individual vehicle types.  678 

Average Speed Impact Study  679 

The CARS can also optionally apply the average speed distribution (ASD) by road type to 680 

compute more realistic mobile emissions on the road network when compared to using a current 681 

single average speed value for each road type (Appendix E). Applying the ASD will generate a 682 

much better representation of actual traffic patterns from each road type. To understand the impacts 683 

of ASD application, we performed sensitivity runs between using a single-speed to the ASD 684 

application (Appendix F). The ASD data was described in Fig. 4, and the road-specific average 685 

single-speed values were developed based on the weighted average method using the same ASD 686 

data. Appendix E and S6 describes the details of ASD as well as road-specific speed values.  687 

Figure 9a shows the differences in total emissions between two scenarios and is organized 688 

by pollutant. The single-speed scenario largely underestimates the emissions across all pollutants 689 

compared to the ones from the ASD scenario. NOx (16%), VOC (40%), and CO (30%) were 690 

especially underestimated. The difference is caused by the lack of low-speed bins (<16 km h-1) 691 

representation when a single average speed approach was used. Higher emissions are emitted while 692 

vehicles are operated with low-speed bins, which decreases the combustion efficiency of ICE and 693 

releases more pollutants. 694 
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Figure 9b shows the road-specific breakdown between the ASD and single speed scenarios 695 

to understand the impacts of vehicle operating speeds on onroad automobile emissions. In this 696 

figure, each color indicates the emissions percentage differences by road types. Other than NH3, 697 

significant discrepancies happened between local urban roads (5.8%), highways (3.9%), and urban 698 

highways (3.0%). Other pollutants, VOC, PM2.5, CO, and SOx, have similar fractions of road types. 699 

This phenomenon is caused by low-speed conditions (<16 km h-1) and the fractions of road VKT 700 

contributions (Appendix C). The lower speeds cause the incomplete combustion of ICE and 701 

increase the emission rate. Also, local urban roads, highways, and urban highways have higher 702 

road VKT contributions at 17%, 18%, and 12%, respectively (Appendix C) than rural roads. 703 

Higher emissions from low speed conditions from these high contribution roads (urban local, urban 704 

highway, and highway) caused these significant differences between the ASD and single-speed 705 

approaches. Although the interstate expressway has the largest VKT contribution (41%), it also 706 

has the lowest fraction of low-speed bins (2%). That is why the difference between the ASD and 707 

single speed scenarios on interstate expressways is less than 1%. In general, NH3 emission factors 708 

do not change by vehicle operating speed, so the ASD impact is quite minimal. 709 

5 Conclusions 710 

The CARS is a bottom-up automobile emissions model that utilizes the localized traffic-711 

related activity and emission factors input datasets to generate high quality localized bottom-up 712 

emissions inventories for policymakers, stakeholders, and research community as well as 713 

temporally and spatially enhanced hourly gridded emissions for CTMs. First, the CARS model 714 

employs the daily VKTs for all registered vehicles and the emission factors function to compute 715 

district-level total daily emissions for each vehicle. To reflect realistic traffic patterns, the CARS 716 

model computes and utilizes link-level VKTs (=link-length×AADT) from the road network GIS 717 

shapefiles to redistribute the original district-level total emissions into spatially enhanced road 718 

link-level emissions. It can also optionally implement a control strategy as well as road restriction 719 

rules to improve the quality of local emission inventories and meet the needs of users.  720 

The CARS model is a fully modularized and computationally optimized python-based 721 

bottom-up mobile emissions model that can effectively process a huge dataset to calculate high 722 

quality spatiotemporal county-level, road link-level and grid cell-level mobile emissions. We 723 

believe that the implementation of the ASD into the CARS improves the representation of onroad 724 

automobile emissions from the road network when compared to a single-speed for each road type 725 

approach. It allows the CARS to have a better representation of low speed (<16 km h-1) vehicle 726 

emissions. We believe that CARS model's versatile spatiotemporal bottom-up automobile 727 

emissions and the in-depth analysis feature can assist government policymakers and stakeholders 728 

to develop the rapid responsive emission abatement strategies as a response to the South Korea’s 729 

national PM2.5 emergency control strategy that enforces the nationwide vehicle restriction policy 730 

within 24 hours.  731 
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Code Availability: 732 

The source code of the CARS model public release version 1.0 can be downloaded from the 733 

Github release website: 734 

https://github.com/bokhaeng/CARS/releases/tag/CARSv1.0 735 

 736 

 737 

Digital Object Identifier (DOI) for the CARS version 1.0: 738 

https://zenodo.org/record/5033314#.YNzDrC1h001 739 

 740 

 741 

Installation Package for CARS version 1.0: 742 

The CARS version 1.0 installation package comes with the complete inputs and outputs datasets 743 

for users to confirm their proper installation on their computers and can be downloaded from the 744 

Github release website: 745 

https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_746 

package_25June2021.zip 747 

 748 

 749 

User’s Guide Documentation: 750 

The CARS version user’s guide documentation can be accessed through the Github repository: 751 

https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual 752 

 753 

 754 

Data availability: 755 

All the datasets, excel and python scripts used in this manuscript for the data analysis are 756 

uploaded through GMD website along with a supplemental appendix document. 757 

 758 

Author contribution  759 

Dr. B.H. Baek and Dr. Jung-Hun Woo are lead researchers in this study. Dr. Rizzieri Pedruzzi 760 

develop the source code of CARS model, Dr. Minwoo Park tested the model and provided the 761 

model input data. Dr. Chi-Tsan Wang analyzed the model result and prepared the manuscript. 762 

Younha Kim,  Chul-Han Song, analyzed the model result and provided comments. 763 

 764 

 765 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

23 

 

Competing interests  766 

The Authors declare that they have no conflict of interest. 767 

Acknowledgments 768 

This research was funded by the National Strategic Project-Fine Particle of the National Research 769 

Foundation (NRF) of Korea funded by the Ministry of Science and ICT (MSIT), the Ministry of 770 

Environment (ME), the Ministry of Health and Welfare (MOHW) (NRF-2017M3D8A1092022), 771 

and by the Korea Environmental Industry & Technology Institute (KEITI) through the Public 772 

Technology Program based on Environmental Policy Program, funded by Korea Ministry of 773 

Environment (MOE) (2019000160007). 774 

  775 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

24 

 

References 776 

Safety flare for burning combustible gas - has tangential inlet for non-flammable gas between 777 

housing and stack, in, Shell Oil Co (Shel-C). 778 

Anaconda, Anaconda python:  https://www.anaconda.com/products/individual, last access: May, 779 

1st, 2020. 780 

Appel, W., Chemel, C., Roselle, S., Francis, X., Hu, R.-M., Sokhi, R., Rao, S. T., and Galmarini, 781 

S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the 782 

North American and European domains, Atmospheric Environment, 53, 142–155, 783 

10.1016/j.atmosenv.2011.11.016, 2013. 784 

Baek, B. H., and Seppanen, C., SMOKE v4.8.1 Public Release (January 29, 2021) (Version 785 

SMOKEv481_Jan2021):  http://doi.org/10.5281/zenodo.4480334 last 2021. 786 

Choi, D., Beardsley, M., Brzezinski, D., Koupal, J., and Warila, J.: MOVES Sensitivity 787 

Analysis: The Impacts of Temperature and Humidity on Emissions 788 

, available at: https://www3.epa.gov/ttn/chief/conference/ei19/session6/choi.pdf  2017.  789 

Choi, K.-C., Lee, J.-J., Bae, C. H., Kim, C.-H., Kim, S., Chang, L.-S., Ban, S.-J., Lee, S.-J., Kim, 790 

J., and Woo, J.-H.: Assessment of transboundary ozone contribution toward South Korea using 791 

multiple source–receptor modeling techniques, Atmospheric Environment, 92, 118-129, 792 

https://doi.org/10.1016/j.atmosenv.2014.03.055, 2014. 793 

Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S. T., 794 

Scheffe, R., Schere, K., Steyn, D., and Venkatram, A.: A FRAMEWORK FOR EVALUATING 795 

REGIONAL-SCALE NUMERICAL PHOTOCHEMICAL MODELING SYSTEMS, Environ 796 

Fluid Mech (Dordr), 10, 471-489, 10.1007/s10652-009-9163-2, 2010. 797 

EEA: EMEP/EEO air pollutant emission inventory guidebook 2016, 2019. 798 

Enthought, Enthought Canapy Python:  https://assets.enthought.com/downloads/edm/, last 799 

access: May, 1st, 2020. 800 

Fallahshorshani, M., André, M., Bonhomme, C., and Seigneur, C.: Coupling Traffic, Pollutant 801 

Emission, Air and Water Quality Models: Technical Review and Perspectives, Procedia - Social 802 

and Behavioral Sciences, 48, 1794-1804, https://doi.org/10.1016/j.sbspro.2012.06.1154, 2012. 803 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

25 

 

Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a 804 

stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional 805 

module, Geosci. Model Dev., 12, 1885-1907, 10.5194/gmd-12-1885-2019, 2019. 806 

Hogrefe, C., Rao, S. T., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R., and McHenry, J.: 807 

Evaluating the performance of regional-scale photochemical modeling systems: Part II—ozone 808 

predictions, Atmospheric Environment, 35, 4175-4188, https://doi.org/10.1016/S1352-809 

2310(01)00183-2, 2001a. 810 

Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Tremback, C. J., Hao, W., Olerud, D., Xiu, 811 

A., McHenry, J., and Alapaty, K.: Evaluating the performance of regional-scale photochemical 812 

modeling systems: Part I—meteorological predictions, Atmospheric Environment, 35, 4159-813 

4174, https://doi.org/10.1016/S1352-2310(01)00182-0, 2001b. 814 

Ibarra-Espinosa, S., Ynoue, R., amp, apos, Sullivan, S., Pebesma, E., Andrade, M. d. F., and 815 

Osses, M.: VEIN v0.2.2: an R package for bottom–up vehicular emissions inventories, Geosci. 816 

Model Dev., 11, 2209-2229, 10.5194/gmd-11-2209-2018, 2018a. 817 

Ibarra-Espinosa, S., Ynoue, R., O'Sullivan, S., Pebesma, E., Andrade, M. D. F., and Osses, M.: 818 

VEIN v0.2.2: an R package for bottom–up vehicular emissions inventories, Geosci. Model Dev., 819 

11, 2209-2229, 10.5194/gmd-11-2209-2018, 2018b. 820 

IEMA, Inventário de Emissões Atmosféricas do Transporte Rodoviário de Passageiros no 821 

Município de São Paulo.:  http://emissoes.energiaeambiente.org.br, last access: May,1st, 2017. 822 

Jang, Y. K., Cho, K. L., Kim, K., Kim, H. J., and Kim, J.: Development of methodology for 823 

esimation of air pollutants emissions and future emissions from on-road mobile sources., 824 

National Institute of Environmental Research, Incheon, Korea., available at:  2007.  825 

Kaewunruen, S., Sussman, J. M., and Matsumoto, A.: Grand Challenges in Transportation and 826 

Transit Systems, Frontiers in Built Environment, 2, 10.3389/fbuil.2016.00004, 2016. 827 

Kim, B.-U., Bae, C., Kim, H. C., Kim, E., and Kim, S.: Spatially and chemically resolved source 828 

apportionment analysis: Case study of high particulate matter event, Atmospheric Environment, 829 

162, 55-70, https://doi.org/10.1016/j.atmosenv.2017.05.006, 2017a. 830 

Kim, H. C., Kim, E., Bae, C., Cho, J. H., Kim, B. U., and Kim, S.: Regional contributions to 831 

particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation 832 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

26 

 

and sensitivity to meteorology and emissions inventory, Atmos. Chem. Phys., 17, 10315-10332, 833 

10.5194/acp-17-10315-2017, 2017b. 834 

Kim, H. C., Kim, S., Kim, B.-U., Jin, C.-S., Hong, S., Park, R., Son, S.-W., Bae, C., Bae, M., 835 

Song, C.-K., and Stein, A.: Recent increase of surface particulate matter concentrations in the 836 

Seoul Metropolitan Area, Korea, Scientific Reports, 7, 4710, 10.1038/s41598-017-05092-8, 837 

2017c. 838 

L., W. P., and Heo, G.: Development of revised SAPRC aromatics mechanism, available at: 839 

https://www.engr.ucr.edu/~carter/SAPRC/saprc11.pdf  2012.  840 

Lee, D., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung, S.-W., Park, J.-M., 841 

Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.: Korean National Emissions Inventory System 842 

and 2007 Air Pollutant Emissions, Asian Journal of Atmospheric Environment, 5-4, 278-291, 843 

2011a. 844 

Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung, S.-W., Park, J.-M., 845 

Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.: Korean National Emissions Inventory System 846 

and 2007 Air Pollutant Emissions, Asian Journal of Atmospheric Environment, 5, 847 

10.5572/ajae.2011.5.4.278, 2011b. 848 

Lejri, D., Can, A., Schiper, N., and Leclercq, L.: Accounting for traffic speed dynamics when 849 

calculating COPERT and PHEM pollutant emissions at the urban scale, Transportation Research 850 

Part D: Transport and Environment, 63, 588-603, https://doi.org/10.1016/j.trd.2018.06.023, 851 

2018. 852 

Li, F., Zhuang, J., Cheng, X., Li, M., Wang, J., and Yan, Z.: Investigation and Prediction of 853 

Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model, Atmosphere, 854 

10, 106, 10.3390/atmos10030106, 2019. 855 

Li, Q., Qiao, F., and yu, L.: Vehicle Emission Implications of Drivers Smart Advisory System 856 

for Traffic Operations in Work Zones, Journal of the Air & Waste Management Association, 11, 857 

10.1080/10962247.2016.1140095, 2016. 858 

Liu, H., Guensler, R., Lu, H., Xu, Y., Xu, X., and Rodgers, M.: MOVES-Matrix for High-859 

Performance On-Road Energy and Running Emission Rate Modeling Applications, Journal of 860 

the Air & Waste Management Association, 69, 10.1080/10962247.2019.1640806, 2019. 861 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

27 

 

Liu, Y., and Sander, S. P.: Rate Constant for the OH + CO Reaction at Low Temperatures, The 862 

Journal of Physical Chemistry A, 119, 10060-10066, 10.1021/acs.jpca.5b07220, 2015. 863 

Luo, H., Astitha, M., Hogrefe, C., Mathur, R., and Rao, S. T.: A new method for assessing the 864 

efficacy of emission control strategies, Atmospheric Environment, 199, 233-243, 865 

https://doi.org/10.1016/j.atmosenv.2018.11.010, 2019. 866 

Lv, W., Hu, Y., Li, E., Liu, H., Pan, H., Ji, S., Hayat, T., Alsaedi, A., and Ahmad, B.: Evaluation 867 

of vehicle emission in Yunnan province from 2003 to 2015, J. Clean Prod., 207, 814-825, 868 

https://doi.org/10.1016/j.jclepro.2018.09.227, 2019. 869 

Moussiopoulos, Ν., Vlachokostas, C., Tsilingiridis, G., Douros, I., Hourdakis, E., Naneris, C., 870 

and Sidiropoulos, C.: Air quality status in Greater Thessaloniki Area and the emission reductions 871 

needed for attaining the EU air quality legislation, Sci. Total Environ., 407, 1268-1285, 872 

https://doi.org/10.1016/j.scitotenv.2008.10.034, 2009. 873 

Nagpure, A. S., Gurjar, B. R., Kumar, V., and Kumar, P.: Estimation of exhaust and non-exhaust 874 

gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi, Atmospheric 875 

Environment, 127, 118-124, 10.1016/j.atmosenv.2015.12.026, 2016. 876 

NIER: Study on Air Pollutant Emission Estimation Method in Transportation section(II) 11-877 

1480523-003573-01, National Archives of Korea, available at: 878 

https://www.archives.go.kr/next/manager/publishmentSubscriptionDetail.do?prt_seq=114054&p879 

age=1554&prt_arc_title=&prt_pub_kikwan=&prt_no  2018.  880 

Ntziachristos, L., and Samaras, Z.: Speed-dependent representative emission factors for catalyst 881 

passenger cars and influencing parameters, Atmospheric Environment, 34, 4611-4619, 882 

https://doi.org/10.1016/S1352-2310(00)00180-1, 2000. 883 

Ntziachristos, L., Gkatzoflias, D., Kouridis, C., and Samaras, Z.: COPERT: A European road 884 

transport emission inventory model, 491-504 pp., 2009. 885 

Pedruzzi, R., Baek, B. H., and Wang, C.-T., CARS:  https://github.com/CMASCenter/CARS, 886 

last access: MAy, 1st, 2020. 887 

Perugu, H., Ramirez, L., and DaMassa, J.: Incorporating temperature effects in California's on-888 

road emission gridding process for air quality model inputs, Environ Pollut, 239, 1-12, 889 

10.1016/j.envpol.2018.03.094, 2018. 890 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

28 

 

Perugu, H.: Emission modelling of light-duty vehicles in India using the revamped VSP-based 891 

MOVES model: The case study of Hyderabad, Transportation Research Part D: Transport and 892 

Environment, 68, 150-163, https://doi.org/10.1016/j.trd.2018.01.031, 2019. 893 

Pfister, G., Wang, C.-t., Barth, M., Flocke, F., Vizuete, W., and Walters, S.: Chemical 894 

Characteristics and Ozone Production in the Northern Colorado Front Range, JGR, 2019. 895 

Pinto, J. A., Kumar, P., Alonso, M. F., Andreão, W. L., Pedruzzi, R., dos Santos, F. S., Moreira, 896 

D. M., and Albuquerque, T. T. d. A.: Traffic data in air quality modeling: A review of key 897 

variables, improvements in results, open problems and challenges in current research, 898 

Atmospheric Pollution Research, 11, 454-468, https://doi.org/10.1016/j.apr.2019.11.018, 2020. 899 

Rao, S. T., Galmarini, S., and Puckett, K.: Air Quality Model Evaluation International Initiative 900 

(AQMEII): Advancing the State of the Science in Regional Photochemical Modeling and Its 901 

Applications, Bulletin of the American Meteorological Society, 92, 23-30, 902 

10.1175/2010BAMS3069.1, 2011. 903 

Rey DR, S. A., Guevara M, Linares MP Evaluation of traffic emission models coupled with a 904 

microscopic traffic simulator and on-road measure, 2018. 905 

Rinke, M., and Zetzsch, C.: Rate Constants for the Reactions of OH Radicals with Aromatics: 906 

Benzene, Phenol, Aniline, and 1,2,4-Trichlorobenzene, Berichte der Bunsengesellschaft für 907 

physikalische Chemie, 88, 55-62, 10.1002/bbpc.19840880114, 1984. 908 

Russell, A., and Dennis, R.: NARSTO critical review of photochemical models and modeling, 909 

Atmospheric Environment, 34, 2283-2324, https://doi.org/10.1016/S1352-2310(99)00468-9, 910 

2000. 911 

Ryu, J. H., Han, J. S., Lim, C. S., Eom, M. D., Hwang, J. W., Yu, S. H., Lee, T. W., Yu, Y. S., 912 

and Kim, G. H.: The Study on the Estimation of Air Pollutants from Auto- mobiles (I) - 913 

Emission Factor of Air Pollutants from Middle and Full sized Buses., in, Transportation 914 

Pollution Research Center, National Institute of Environmental Research, Incheon, Korea., 2003. 915 

Ryu, J. H., Lim, C. S., Yu, Y. S., Han, J. S., Kim, S. M., Hwang, J. W., Eom, M. D., Kim, G. Y., 916 

Jeon, M. S., Kim, Y. H., Lee, J. T., and Lim, Y. S.: The Study on the Esti- mation of Air 917 

Pollutants from Automobiles (II) - Emis- sion Factor of Air Pollutants from Diesel Truck., in, 918 

Trans- portation Pollution Research Center, National Institute of Environmental Research, 919 

Incheon, Korea., 2004. 920 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

29 

 

Ryu, J. H., Yu, Y. S., Lim, C. S., Kim, S. M., Kim, J. C., Gwon, S. I., Jeong, S. W., and Kim, D. 921 

W.: The Study on the Estimation of Air Pollutants from Automobiles (III) - Emission Factor of 922 

Air Pollutants from Small sized Light-duty Vehicles., in, Transportation Pollution Research 923 

Center, National Institute of Environmental Research, Korea., 2005. 924 

Sallis, P., Bull, F., Burdett, P., Frank, P., Griffiths, P., Giles-Corti, P., and Stevenson, M.: Use of 925 

science to guide city planning policy and practice: How to achieve healthy and sustainable future 926 

cities, The Lancet, 388, 10.1016/S0140-6736(16)30068-X, 2016. 927 

Smit, R., Kingston, P., Neale, D. W., Brown, M. K., Verran, B., and Nolan, T.: Monitoring on-928 

road air quality and measuring vehicle emissions with remote sensing in an urban area, 929 

Atmospheric Environment, 218, 116978, https://doi.org/10.1016/j.atmosenv.2019.116978, 2019. 930 

Sun, W., Duan, N., Yao, R., Huang, J., and Hu, F.: Intelligent in-vehicle air quality 931 

management : a smart mobility application dealing with air pollution in the traffic, 2016. 932 

Tominaga, Y., and Stathopoulos, T.: Ten questions concerning modeling of near-field pollutant 933 

dispersion in the built environment, Build. Environ., 105, 390-402, 934 

https://doi.org/10.1016/j.buildenv.2016.06.027, 2016. 935 

USEPA: Population and Activity of Onroad Vehicles in MOVES3, in, edited by: USEPA, 2020. 936 

WHO, Ambient air pollution- a major threat to health and climate:  937 

https://www.who.int/airpollution/ambient/en/, last 2019. 938 

Xu, X., Liu, H., Anderson, J. M., Xu, Y., Hunter, M. P., Rodgers, M. O., and Guensler, R. L.: 939 

Estimating Project-Level Vehicle Emissions with Vissim and MOVES-Matrix, Transportation 940 

Research Record, 2570, 107-117, 10.3141/2570-12, 2016. 941 

Yarwood, G., and Jung, J.: UPDATES TO THE CARBON BOND MECHANISM FOR 942 

VERSION 6 (CB6), 2010. 943 

  944 

https://doi.org/10.5194/gmd-2021-135
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

   

 

30 

 

Tables 945 

Table 1. Computational processing time by CARS module based on the modeling setup: Total 946 

number of activity data = 24,383,578; Emission Factors = 84,608; GIS road links=385,795; 947 

districts/states=5,150/16; 9km9km grid cells=5,494 (82 columns 67 columns). 948 

No Module 
Desktop i7 

(minutes) 

Laptop i9 

(minutes) 

Averaged Time 

(minutes) 

1 Process activity data 1.8 1.5 1.7 

2 process emission factors 1.1 0.8 1.0 

3 Process shape file 9.9 7.3 8.6 

4 Calculate district emissions 6.4 5.7 6.1 

5 Grid4AQM [31days] 4.8 [75.9] 5.0 [87.2] 4.9 [81.6] 

6 Plot figures 6.2 5.4 5.8 

 Total [31days] 30.2 [101.3] 25.7 [107.9] 28.1[104.8] 

 949 
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Table 2. The total emissions comparison between CARS and CAPSS for the 2015 emission. 952 

Emission Inventory 
Pollutants (t yr-1) 

NOx VOC PM2.5 CO SOx NH3 

CARS 2015 301,794 61,186 10,108 373,864 172 12,453 

CAPSS 2015 369,585 46,145 8,817 245,516 209 10,079 

 953 
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Table 3. The summary tables of emissions (t yr-1), contributions (%), and impact factor (IF, kg yr-955 
1) per vehicle for criteria air pollutants (CAPs) by vehicle and fuel types: (a) for NOx; (b) VOC; 956 

(c) for PM2.5; (d) for CO; (e) for SOx; and (f) for NH3.  957 

 958 

(a) NOx  959 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 20,219 (6.70%) 1.94 14,783 (4.90%) 12.8 8,159 (2.77%) 4.49 12 (0.00%) 1.26 65 (0.02%) 0.39 43,239 (14.3%) 3.19 

Truck 23 (0.01%) 5.54 148,246 (49.1%) 47.9 920 (0.31%) 4.55 88 (0.03%) 66.4 - - 149,277 (49.5%) 45.2 

Bus 0 (0.00%) 0.97 25,677 (8.51%) 340 - - 9,260 (3.07%) 248 0 (0.00%) 1.77 34,938 (11.6%) 333 

SUV 159 (0.05%) 1.19 39,565 (13.1%) 11.4 175 (0.06%) 8.54 0 (0.00%) 1.60 1 (0.00%) 0.42 39,900 (13.2%) 11.0 

Van 14 (0.00%) 4.78 16,659 (5.52%) 22.6 1,337 (0.44%) 6.80 0 (0.00%) 1.25 0 (0.00) 0.37 18,012 (6.00%) 19.2 

Taxi - - - - 1,217 (0.40%) 2.11 - - - - 1,217 (0.40%) 2.11 

Special 1 (0.00%) 20.1 12,347 (4.10%) 152 0 (0.00%) 0.52 - - - - 12,375 (4.10%) 151 

Motorcycle 2,836 (0.94%) 1.31 -  - - - - - - 2,836 (0.94%) 1.32 

Total 23,253 (7.70%) 1.83 257,305 (85.3%) 29.9 11,809 (3.91%) 4.20 9,361 (3.10%) 36.7 66 (0.02%) 0.39 301,794 (100%) 13.3 

 960 

(b) VOC  961 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 28,434 (46.5%) 2.73 629 (1.03%) 0.55 2,107 (3.44%) 1.16 3 (0.01%) 0.33 77 (0.13%) 0.47 31,250 (51.1%) 2.30 

Truck 23 (0.04%) 5.44 8,194 (13.4%) 2.65 286 (0.47%) 1.41 102 (0.17%) 77.2 - - 8,605 (14.1%) 2.61 

Bus 0 (0.00%) 1.65 717 (1.17%) 9.51 - - 11,942 (19.5%) 320 0 (0.00%) 0 12,659 (20.7%) 112 

SUV 246 (0.40%) 1.84 2,441 (3.99%) 0.71 46 (0.08%) 2.25 0 (0.00%) 0.75 1 (0.00%) 0.55 2,733 (4.47%) 0.76 

Van 21 (0.03%) 7.04 1,185 (1.94%) 1.61 393 (0.64%) 2.00 0 (0.00%) 0.45 0 (0.00%) 0 1,599 (2.61%) 1.71 

Taxi - - - - 273 (0.45%) 0.47 - - - - 273 (0.45%) 0.47 

Special 1 (0.00%) 25.8 904 (1.48%) 11.1 0 (0.00%) 0.23 - - - - 905 (1.48%) 11.0 

Motorcycle 3,160 (5.16%) 1.46 -  - - - - - - 3,160 (5.16%) 1.46 

Total 31,885 (52.1%) 2.50 14,070 (23.0%) 1.64 3,106 (5.08%) 1.10 12,047 (19.7%) 247 78 (0.13%) 0.47 61,186 (100%) 2.51 

 962 

(c) PM2.5 963 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 144 (1.42%) 0.01 809 (8.00%) 0.70 0 0 0 0 3 (0.03%) 0.02 956 (9.46%) 0.07 

Truck 0 (0.01%) 0 5,415 (53.6%) 1.75 0 0 0 0 - - 5,415 (53.6%) 1.64 

Bus 0 0 214 (2.11%) 2.83 - - 0 0 0 (0.01%) 0.09 214 (2.11%) 1.89 

SUV 2 (0.02%) 0.02 2,165 (21.4%) 0.63 0 0 0 0 0 0.02 2,167 (21.4%) 0.60 

Van 0 0 1,127 (11.2%) 1.53 0 0 0 0 0 0.02 1,127 (11.2%) 1.20 

Taxi - - - - 0 0 - - - - 0 0 

Special 0 0 230 (2.28%) 2.82 0 0 - - - - 230 (2.28%) 2.81 

Motorcycle 0 0 -  - - - - - - 0 0 

Total 146 (1.44%) 0.01 9,959 (98.5%) 1.16 0 0 0 0 3 (0.03%) 0.02 10,108 (100%) 0.41 

 964 
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 966 

(d) CO 967 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 178,121 (47.6%) 17.1 3,436 (0.92%) 2.98 42,886 (11.5%) 23.6 29 (0.01%) 2.91 177 (0.05%) 1.07 224,649 (60.1%) 16.6 

Truck 254 (0.07%) 61.1 47,065 (12.6%) 15.2 9,088 (2.43%) 44.9 68 (0.02%) 51.4 - - 56,475 (15.1%) 17.1 

Bus 0 (0.00%) 19.3 7,633 (2.05%) 101 - - 1542 (0.41%) 41.3 1 (0.00%) 4.64 9,176 (2.45%) 81.2 

SUV 2,616 (0.70%) 19.6 13,401 (3.58%) 3.87 791 (0.21%) 38.6 0 (0.00%) 4.09 2 (0.00%) 1.15 16,808 (4.50%) 4.65 

Van 131 (0.04%) 43.4 6,611 (1.77%) 8.97 8,032 (2.15%) 40.9 2 (0.00%) 6.53 0 (0.00%) 1.00 14,777 (3.95%) 15.8 

Taxi - - - - 8,481 (2.27%) 14.7 - - - - 8,481 (2.27%) 14.7 

Special 13 (0.00%) 269 4,224 (1.13%) 51.7 1 (0.00%) 3.69 - - - - 4,239 (1.13%) 51.7 

Motorcycle 39,256 (10.5%) 18.2 -  - - - - - - 39,256 (10.5%) 18.2 

Total 220,390 (59.0%) 17.3 82,372 (22.0%) 9.57 69,281 (18.5%) 24.6 1641 (0.44%) 33.6 180 (0.05%) 1.07  373,864 (100%) 15.4 

 968 

(e) SOx 969 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 51.3 (29.8%) 0.005 6.5 (3.79%) 0.006 8.28 (4.81%) 0.005 0 0 1.14 (0.67%) 0.007 67.2 (39.1%) 0.005 

Truck 0.03 (0.02%) 0.008 45.5 (26.5%) 0.015 0.97 (0.57%) 0.005 0 0 - - 46.5 (27.1%) 0.014 

Bus 0 (0.00%) 0.003 10.8 (6.26%) 0.143 - - 0 0 0.01 (0.01%) 0.047 10.8 (6.26%) 0.095 

SUV 0 (0.00%) 0.000 18.2 (10.6%) 0.005 0.00 (0.00%) 0.000 0 0 0.01 (0.01%) 0.007 18.2 (10.6%) 0.005 

Van 0.02 (0.01%) 0.006 5.5 (3.20%) 0.007 0.77 (0.45%) 0.004 0 0 0 (0.00%) 0.010 6.30 (3.66%) 0.007 

Taxi - - - - 7.71 (4.49%) 0.013 - - - - 7.71 (4.48%) 0.013 

Special 0 (0.00%) 0.003 7.3 (4.27%) 0.090 0.00 (0.00%) 0.005 - - - - 7.34 (4.27%) 0.090 

Motorcycle 7.94 (4.62%) 0.004 -  - - - - - - 7.94 (4.62%) 0.004 

Total 59.3 (34.5%) 0.006 93.8 (54.5%) 0.011 17.7 (10.3%) 0.006  0 0 1.17 (0.68%) 0.007 172 (100%) 0.007 

 970 

 971 

(e) NH3 972 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 12,225 (98.3%) 1.17 20 (0.16%) 0.02 0 0.00 0 0 19 (0.15%) 0.11 12,284 (98.6%) 0.91 

Truck 0 (0.00%) 0.03 82 (0.66%) 0.03 0 0.00 0 0 - - 82 (0.66%) 0.02 

Bus 0 (0.00%) 0.09 15 (0.12%) 0.19 - - 0 0 0 (0.00%) 0.51 15 (0.12%) 0.13 

SUV 0 (0.00%) 0.00 0 (0.00%) 0.00 0 0.00 0 0 0 (0.00%) 0.16 0 (0.00%) 0.00 

Van 0 (0.00%) 0.02 14 (0.11%) 0.02 0 0.00 0 0 0 (0.00%) 0.09 14 (0.11%) 0.01 

Taxi - - - - 0 0.00 - - - - 0 (0.00%) 0.00 

Special 0 (0.00%) 0.01 10 (0.08%) 0.12 0 0.00 - - - - 10 (0.08%) 0.12 

Motorcycle 49 (0.39%) 0.02 -  - - - - - - 49 (0.39%) 0.02 

Total 12,293 (98.7%) 0.97 141 (1.13%) 0.02 0 0.00  0 0 19 (0.16%) 0.12 12,453 (100%) 0.51 
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Figures 975 

 976 

Figure 1. CARS schematic methodology to estimate mobile emissions. 977 
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 979 

Figure 2. (a) The number of vehicles by vehicle and fuel types and (b) the total daily VKT by 980 

vehicle and fuel types in South Korea. 981 
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 984 

Figure 3. Variation of NOx emission factors from diesel compact engines by vehicle speed and 985 

ambient temperatures: (a) NOx emission factors function to vehicle speed; (b) NOx emission 986 

factors of diesel compact truck function to vehicle speed and ambient temperature. 987 
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 989 
Figure 4. Road-specific average speed distribution (ASD) in South Korea.  990 
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 993 
Figure 5. The schematic of modules and their functions in the CARS.  994 
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 996 
Figure 6 (a) the road network GIS shapefile of Seoul, South Korea; (b) two districts with different 997 

colors (purple and blue); (c) the modeling grid cells over road segments. 998 
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 1000 

Figure 7. Three different formats of CO emissions from CARS, (A) District-level total emissions 1001 

(t yr-1) (B) Link-level total emissions (t yr-1), (C) CTM-ready gridded hourly total emissions (moles 1002 

s-1). 1003 
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 1005 
Figure 8. Comparison between CARS 2015 and CAPSS 2015 onroad mobile emissions 1006 

inventories by vehicle types. The standard line is CAPSS 2015 data. 1007 
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 1009 

 1010 
Figure 9. The impacts of emissions between the ASD and single-speed approach: (a) the total 1011 

emission differences by pollutant; (b) The road-specific difference (%) by pollutant.  1012 
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Appendics 1014 

 1015 

Appendix A: The vehicle types classified by fuel type, vehicle body type, and engine size. The 1016 

emission factors of the diesel vehicle with the star (*) are depended on the ambient temperature 1017 

(T). 1018 

Vehicle 

Types 

Fuel Types 

Gasoline Diesel LPG CNG HYBRID_G HYBRID_D HYBRID_L HYBRID_C 

Sedan 

Supercompact Supercompact* Supercompact - - - - - 

Compact compact* compact compact compact compact compact - 

Fullsize Fullsize* Fullsize Fullsize Fullsize Fullsize Fullsize - 

Midsize Midsize* Midsize Midsize Midsize Midsize Midsize - 

Truck 

Supercompact Supercompact Supercompact - - - - - 

Compact Compact* Compact Compact - - - - 

Fullsize Concrete - Fullsize - - - - 

Midsize Fullsize Midsize Midsize - - - - 

- Midsize - - - - - - 

- Dump - - - - - - 

- Special Special Special - - - - 

Bus 
Urban Urban Urban Urban - Urban - - 

- Rural - Rural - Rural - Rural 

SUV 
Compact Compact* Compact - - - - - 

Midsize Midsize* Midsize Midsize Midsize - - - 

Van 

supercompact supercompact supercompact - - - - - 

Compact Compact Compact Compact - - - - 

- - Fullsize Fullsize Fullsize Fullsize Fullsize Fullsize 

Midsize Midsize Midsize Midsize Midsize Midsize Midsize Midsize 

Taxi 

- - Compact - - - - - 

- - Fullsize - - - - - 

- - Midsize - - - - - 

Special 

- Tow - - - - - - 

Wrecking Wrecking Wrecking Wrecking - - - - 

Others Others Others - - - - - 

Motorcycle 

Compact - - - - - - - 

Midsize - - - - - - - 

Fullsize - - - - - - - 

-  no existence 1019 
* ambient temperature-dependent diesel vehicle  1020 
LPG: Liquefied Petroleum Gas  1021 
CNG: Connecticut Natural Gas 1022 
Hybrid_G: hybrid vehicle with gasoline  1023 
Hybrid_D: hybrid vehicle with diesel 1024 
Hybrid_L: hybrid vehicle with LPG   1025 
Hybrid_C: hybrid vehicle with CNG 1026 
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Appendix B, The summary of activity data (number of vehicles and daily total VKTs) in South 1029 

Korea by vehicle type with engine size.  1030 

Vehicle 

Types 
Engine sizes 

Fuel Types 

Gasoline Diesel LPG CNG Hybrid 

Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT 

Sedan 

Supercompact 1,792,471 50,197,345 46 1,761 83,226 4,000,067 6 237 - - 

Compact 1,372,317 39,543,668 51,324 2,570,086 8,040 257,060 276 12,115 3,802 137,360 

Fullsize 2,403,327 100,632,702 428,831 20,928,552 292,850 15,910,588 5,296 323,852 21,533 1,086,509 

Midsize 4,858,533 167,454,032 672,960 33,126,318 1,431,970 66,640,378 4,310 625,717 140,527 6,717,856 

Truck 

Supercompact 850 9,595 816 354 111,051 6,550,476 - - - - 

Compact 3,185 143,510 2,655,089 133,480,216 87,650 3,567,109 42 2,694 - - 

Fullsize 3 422 180,991 25,774,819 - - 72 4,676 - - 

Midsize 98 7,430 258,509 17,477,685 1,434 47,870 14 483 - - 

Dump - - - - - - - - - - 

Special 20 970 - - 2,292 99,124 1,194 60,886 - - 

Bus 
Urban 1 126 40,448 7,282,593 1 652 6,543 1,466,854 2 282 

Rural - - 34,997 6,334,278 - - 30,792 6,460,001 216 50,873 

SUV 
Compact 42,348 1,395,153 2,341,397 105,962,626 6,946 275,728 13 551 -   

Midsize 91,002 3,520,552 1,120,128 5,277,861 13,567 595,426 15 706 1,719 88,683 

Van 

supercompact 88 1,645 - - 44,947 2,058,014 - - - - 

Compact 2,937 87,507 685,317 34,781,937 151,654 6,135,138 7 255 - - 

Fullsize - - 19,452 1,318,221 1 14 97 7,598 3 136 

Midsize 2 1,303,795 31,790 1,433,407 15 416 160 15,216 2 85 

Special -   - - -   - - - - 

Taxi 

Compact - - - - 8,380 576,378 - - - - 

Fullsize - - - - 92,861 10,827,756 - - - - 

Midsize - - - - 474,455 69,087,721 - - - - 

Special 

Tow - - 40,807 7,447,773 - - - - - - 

Wrecking 2 138 12,568 813,746 128 6,607 3 94 - - 

Others 47 553 28,275 989,988 180 9,966 - - - - 

Motorcycle 

Compact 184,822 3,507,948 - - - - - - - - 

Fullsize 65,964 3,493,728 - - - - - - - - 

Midsize 1,910,988 61,676,824 - - - - - - - - 

-  no existence 1031 
LPG: Liquefied Petroleum Gas 1032 
CNG: Connecticut Natural Gas 1033 
Hybrid: all hybrid vehicles, electric power mixed with fossil fuel (gasoline, diesel, LPG, or CNG) 1034 
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 1038 

Appendix C, Eight road types with assigned average vehicle operating speed and VKT fractions. 1039 

Road 

types 
Description 

Average Speed 

(km h-1) 

Road VKT 

fraction 

101 Interstate Expressway 90 41% 

102 Urban Expressway 60 5% 

103 Highway 58 18% 

104 Urban Highway 36 12% 

105 Rural Highway 55 3% 

106 Rural Local Road 45 4% 

107 Urban Local Road 32 17% 

108 Ramp 50 0.4% 

 1040 

 1041 

Appendix D, The daily average VKT (km d-1) per vehicle by vehicle and fuel types. 1042 

Vehicle types 
Fuel Types 

Gasoline Diesel LPG CNG Hybrid Average 

Sedan 34 49 48 97 48 38 

Truck 39 57 51 52 - 57 

Bus 126 180 - 212 237 191 

SUV 37 46 42 45 52 46 

VAN 29 51 42 87 44 49 

Taxi - - 140 - - 140 

Special 14 113 54 31 - 113 

Motorcycle 32 - - - - 32 
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Appendix E, Average speed distribution (ASD) for each road type: The table columns are 1045 

different road types, and the table rows are average speed of each speed bin.  1046 
Speed 

(km/d) 

Road Types 

101 102 103 104 105 106 107 108 

4 1.50% 2.00% 5.00% 5.00% 5.00% 10.00% 10.00% 0.00% 

8 0.50% 1.00% 2.00% 2.00% 2.00% 5.00% 5.00% 0.00% 

16 0.00% 0.33% 0.40% 3.59% 0.41% 0.30% 2.76% 0.11% 

24 0.00% 1.09% 3.64% 14.35% 1.45% 2.91% 11.75% 5.85% 

32 0.01% 3.04% 6.82% 35.25% 6.85% 6.15% 40.80% 12.80% 

40 0.17% 6.43% 9.28% 17.14% 14.70% 12.00% 12.69% 24.53% 

48 0.52% 14.76% 10.70% 10.86% 16.20% 23.30% 7.49% 23.74% 

56 0.53% 16.66% 12.52% 5.72% 15.42% 20.72% 4.24% 6.60% 

64 1.94% 23.49% 12.83% 2.68% 6.08% 10.06% 2.56% 10.90% 

72 5.05% 16.30% 10.51% 1.90% 13.21% 3.84% 1.45% 5.30% 

80 11.70% 10.19% 12.69% 0.74% 9.98% 2.85% 0.53% 5.30% 

89 28.73% 4.30% 12.21% 1.04% 6.75% 2.21% 0.65% 4.59% 

97 34.24% 0.51% 1.82% 0.15% 1.90% 0.62% 0.08% 0.00% 

105 14.99% 0.00% 0.02% 0.00% 0.04% 0.03% 0.00% 0.30% 

113 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

121 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Appendix F: A single-speed for each road type 1047 

Speed 

(km/d) 

Road Types 

101 102 103 104 105 106 107 108 

4 0% 0% 0% 0% 0% 0% 0% 0% 

8 0% 0% 0% 0% 0% 0% 0% 0% 

16 0% 0% 0% 0% 0% 0% 0% 0% 

24 0% 0% 0% 0% 0% 0% 0% 0% 

32 0% 0% 0% 0% 0% 0% 100% 0% 

40 0% 0% 0% 100% 0% 0% 0% 0% 

48 0% 0% 0% 0% 0% 100% 0% 100% 

56 0% 0% 100% 0% 100% 0% 0% 0% 

64 0% 100% 0% 0% 0% 0% 0% 0% 

72 0% 0% 0% 0% 0% 0% 0% 0% 

80 0% 0% 0% 0% 0% 0% 0% 0% 

89 100% 0% 0% 0% 0% 0% 0% 0% 

97 0% 0% 0% 0% 0% 0% 0% 0% 

105 0% 0% 0% 0% 0% 0% 0% 0% 

113 0% 0% 0% 0% 0% 0% 0% 0% 

121 0% 0% 0% 0% 0% 0% 0% 0% 
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